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a b s t r a c t

This paper studies the vibration suppression of actively controlled jacket-type offshore

platforms with fixed delay in the control. Based on the wave theory and Morison

equation, an exosystem is designed to describe the irregular wave forces. Through a

particular transformation, the original delay system is reduced into a non-delay system.

control law with memory (FFOCLM). The memory terms in FFOCLM compensate the

time-delay in control input. The feedforward term of the controller includes the

information of the irregular wave forces. The feedback loop incorporates the

displacement and velocity of structure into the control law. The FFOCLM is proved to

be existent and unique, and able to stabilize the time-delay system. The feasibility and

effectiveness of the presented control law is demonstrated by a numerical example of a

jacket-type offshore structure.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In modern world, oil crisis has become a bottle-neck of economy. Then offshore structures, especially the oil and gas
production platforms, play a more and more important role. Located in the hostile environment, the platforms undergo
continuous vibration due to the external loads such as wind, wave, and earthquake. To prevent fatigue damage and ensure
safety and production efficiency, displacement and acceleration of the platforms should be limited. CII offshore platform is
located in the South of BoHai Bay. Due to wave force on the platform and structure problem of legs, the max displacement
of CII life platform is 4 cm that makes people on the platform fell uncomfortable. After servicing, the platform works well.
In the past decades, active control has attracted much interest and many valuable results have been obtained. To suppress
the vibration of offshore structures, two consecutive loops were used to design the feedback process [1]. Feedforward
and feedback optimal control law was presented to suppress the vibration of the offshore platforms [2,3]. From the
view of frequency domain, H2 optimal control algorithm was applied to control the lateral vibration of the jacket-type
platform [4]. Optimal feedforward and feedback H2 approach was proposed based on the augmented system with wave
load [5].

Previous studies have presented many methods to depress the vibration efficiently, but most of them do not consider
the effect of time-delay. However, in practical control systems, time-delay exists widely in the data acquisition, on-line data
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processing, computation and application of control force. The structures of civil engineering contain inevitable time-delay
in the control action. The application of unsynchronized control forces due to time-delay causes the degradation of the
system performance and it may even render the controlled system to be unstable. Then we should pay serious attention to
the control delay problem in the vibration suppression of the platforms.

Researchers have presented some approaches to solve the control delay problem [6]. A direct way is to transform
the time-delay system into a non-delay system through augmenting state [7,8]. The method can be completed easily,
but it may result in an exponential growth of system dimension. Then the computation progress for the high dimension
system with long time-delay is complicated. Meanwhile, for discrete time system, state-augmented method cannot
always ensure the controllability and observability of the control system. Predictive algorithms were also presented [9,10].
They work well for single degree of freedom (SDOF) systems with short time-delay, but the control efficiency decrease
with the increase of time-delay. Classic Smith predictor was presented and used for stable processes with long
time-delay [11,12]. For higher value of time-delay, although the stability of the controlled structure is guaranteed by
Classic Smith predictor, the performance degrades drastically. Modified Smith predictor has been proposed for the
integrating and unstable time-delay system with load disturbance [13]. The phase-shift method [14] is well-known in civil
engineering to compensate the time-delay. In the SDOF systems, the method works well. But with the method, one cannot
guarantee the stability and performance of the multiple degree of freedom (MDOF) systems. We can see that, in the
current literature, the study on the active control with time-delay is not very thorough. It is important and necessary to
develop an efficient vibration control law applicable to the civil engineering that can solve the problem due to time-delay
in the control.

This paper investigates the vibration control of offshore platforms with active mass damper (AMD) device. Time-delay
exists in the control action. The rest of this paper is organized as follows. In Section 2, an exosystem is designed to
simulate irregular wave forces. In Section 3, the original control problem of offshore structures is formulated as optimal
control for the time-delay discrete system with persistent external disturbance. By a particular transformation, the time-
delay system is reduced into delay free system. Section 4 presents the FFOCLM based on reduced system. In Section 5,
the validity and performance of the FFOCLM is evaluated by applying it to a numerical example of steel jacket-type
offshore platform. FFOCLM is compared against state feedback optimal control law with memory (SFOCLM), the
feedforward and feedback optimal control law (FFOCL) that is designed by assuming no time-delay, and predictive
optimal control law. We study the sensitivity of damping ratio at the end of Section 5. The last section gives the conclusion
of the paper.
2. Irregular wave loads

Offshore structures are exposed to severe environment and wave actions on the platforms cause continuous vibration of
structure. For the irregular wave, the elevation ZðtÞ can be expressed as

ZðtÞ ¼
Xr

j¼1

ZjðtÞ ¼
Xr

j¼1

Aj cosyj ð1Þ

where t is the time, r is the number of wave components, Aj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SZðojÞDoj

q
, yj ¼ �ojt þ ej, SZ is the wave spectrum,

oj is the frequency of the jth wave component, ej is the random phase angle uniformly distributed between
0 and 2p.

Assume that waves come from the direction where the wave force is the strongest, and that is the direction of x-axis.
The following assumptions hold through the paper

Assumption 1.
(1)
 The wave propagation is unidirectional;

(2)
 The platform has been idealized as a monopod structure.
According to wave theory, the forces induced by wave components constitute the total wave forces acting on the offshore
structures. For the jth wave component, the wave force is

fjðtÞ ¼

Z d

0
pjðz; tÞjðzÞdz ð2Þ

where d is the water depth, z is the vertical coordinate axis (zero at the sea bottom), jðzÞ is the shape function of the
structure, pjðz; tÞ is the force of the jth wave component acting on per unit length of the cylinder. The force consists of linear
inertia force and nonlinear drag force. The drag force brings finite-memory to the system but the contribution to response
is limited. Then pjðz; tÞ can be calculated by linearized Morison equation

pjðz; d; tÞ ¼ CdrD
ffiffiffiffiffiffiffiffiffi
8=p

p
svj

vjðz; d; tÞ=2þ CmrpD2 _vjðz;d; tÞ=4; ð3Þ



ARTICLE IN PRESS

H. Ma et al. / Journal of Sound and Vibration 328 (2009) 369–381 371
in which Cd is the drag coefficient, Cm is the inertia coefficient, r is the fluid density, D is the diameter of the cylinder, vj and
_vj are horizontal velocity and acceleration of the water particle in the jth wave component, respectively, svj

is the standard
deviation of vj.

vjðz; d; tÞ ¼ oj chðkjzÞ=shðkjdÞZjðtÞ DTvj
ðoj; kj; z; dÞZjðtÞ; ð4Þ

_vjðz; d; tÞ ¼ �o2
j chðkjzÞ=shðkjdÞ tanyjZjðtÞ DTaj

ðoj; kj; z; dÞZjðtÞ: ð5Þ

where kj is the wave number of the jth wave component that is determined by the dispersion relationship

o2
j ¼ gkj tanhðkjdÞ; ð6Þ

in which g is the gravitational acceleration.

Substituting Eqs. (4) and (5) into Eq. (3), wave force Eq. (2) can be rewritten as

fjðtÞ ¼

Z d

0
½CdrD

ffiffiffiffiffiffiffiffiffi
8=p

p
svj

Tvj
=2þ CmrpD2Taj

=4�jðzÞdzZjðtÞ DTjðojÞZjðtÞ: ð7Þ

Therefore we get the total wave force acting on the jacket-type platform

fðtÞ ¼
Xr

j¼1

fjðtÞ ¼
Xr

j¼1

TjðojÞZjðtÞ: ð8Þ

In the following, we construct an exosystem to simulate the irregular wave forces. Let vj ¼ Aj cosðyjÞ and
vðtÞ ¼ ½v1 � � � vr�

T, and note that

€v j ¼ �o2
j vj; j ¼ 1;2; . . . ; r; ð9Þ

then we get

€v ðtÞ ¼

�o2
1

&

�o2
r

2
64

3
75vðtÞ DGavðtÞ: ð10Þ

Let wðtÞ ¼ ½vT
ðtÞ _v

T
ðtÞ�T, then

_wðtÞ ¼
0 I

Ga 0

" #
wðtÞ DGcwðtÞ;

vðtÞ ¼ ½I 0�wðtÞ; ð11Þ

where I 2 Rr�r is unit matrix, 0 2 Rr�r is zero matrix.
According to the definition of ZðtÞ, one gets

ZjðtÞ ¼ vjðtÞ; j ¼ 1;2; . . . ; r: ð12Þ

Then Eq. (8) can be rewritten as

fðtÞ ¼ ½T1ðoÞ . . . TrðoÞ�vðtÞ ¼ ½T1ðoÞ . . . TrðoÞ�½I 0�wðtÞ DFcwðtÞ: ð13Þ

Therefore the total irregular wave forces could be generated by the following exosystem

_wðtÞ ¼ GcwðtÞ;

fðtÞ ¼ FcwðtÞ;

wð0Þ ¼ ½vT
ð0Þ _v

T
ð0Þ�T: ð14Þ

Let T denote the sampling period, one can get the discrete-time form of Eq. (14)

wðkþ 1Þ ¼ GwðkÞ; k ¼ 0;1;2; . . . ;

fðkÞ ¼ FwðkÞ;

wð0Þ ¼ ½vT
ð0Þ _v

T
ð0Þ�T ð15Þ
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where G ¼ expðGcTÞ, F ¼ Fc, the eigenvalues liðGÞ of G satisfy

jliðGÞj ¼ 1; i ¼ 1;2; . . . ;2r: ð16Þ

3. Problem statement

The paper investigates the active vibration control law applicable to civil engineering. For steel jacket-type offshore
platform with AMD device, the time-delay in control input is inevitable. In this section, we first give motion equation of the
offshore structure. By application of finite element method, the fixed offshore platform can be modeled as a MDOF system.
Because the first mode response contributes most to the dynamical model, the platform can be modeled as a SDOF system
for simplicity. In general the approximation is adequate for the purpose of the vibration control. The sketch of combined
system, an offshore platform with an AMD device, is shown in Fig. 1.

In the followings, the modal mass, natural frequency, and damping ratio of the simplified SDOF system are denoted by
m1, o1, and x1, respectively, and the corresponding modal coordinate that refers to the deck motion of the offshore platform
is denoted by x1. The mass, natural frequency, and damping ratio of the AMD device are denoted by m2, o2, and x2,
respectively, and the displacement of the AMD device is denoted by x2. The control force and irregular wave force are
denoted by u and f, respectively. t is the time-delay in control. From physical analysis, we get the motion of the combined
system described by the following coupled differential equations

€x1ðtÞ ¼ �ðo2
1 þo

2
2m2=m1Þx1ðtÞ þ ðo2

2m2=m1Þx2ðtÞ � 2ðx1o1 þ x2o2m2=m1Þ _x1ðtÞ þ ð2x2o2m2=m1Þ _x2ðtÞ
þ 1=m1ðf ðtÞ � uðt � tÞÞ;

€x2ðtÞ ¼ o2
2ðx1ðtÞ � x2ðtÞÞ þ 2x2o2ð _x1ðtÞ � _x2ðtÞÞ þ uðt � tÞ=m2: ð17Þ

By introducing state vector x ¼ ½x1 x2 _x1 _x2�
T, one can obtain state-space model for the combined system

_xðtÞ ¼ AxðtÞ þ Buðt � tÞ þ E fðtÞ;

xð0Þ ¼ j; ð18Þ

where

A ¼

0 0 1 0

0 0 0 1

�ðo2
1 þo2

2m2=m1Þ o2
2m2=m1 �2ðx1o1 þ x2o2m2=m1Þ 2x2o2m2=m1

o2 �o2 2x2o2 �2x2o2

2
66664

3
77775;

B ¼ ½0 0 � 1=m1 1=m2�
T;E ¼ ½0 0 1=m1 0�T:

Taking T as sampling period and using zero order hold, we get the discrete time form of Eq. (18)

xðkþ 1Þ ¼ AxðkÞ þ B1uðk� hÞ þ EfðkÞ; k ¼ 0;1;2; . . . ;
x1

x2

f

c2

k2

u
m2

c1k1

m1

Fig. 1. Sketch of the platform-AMD system.
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xð0Þ ¼ j;

uðkÞ ¼ 0; k ¼ �h;�hþ 1; . . . ;�1: ð19Þ

where xðkÞ 2 Rn, uðkÞ 2 Rm, and fðkÞ 2 Rp are the state variable, control input, and persistent wave loads, respectively. h 2 N

is control delay, t ¼ hT � m̃ ð0r̃moTÞ, j is the initial value of state variable, A ¼ expðATÞ, B1 ¼
R T

0 expðAtÞdtB,
E ¼

R T
0 expðAtÞdtE.

By following transformation

zðkÞ ¼ xðkÞ þ
Xk�1

i¼k�h

Ak�i�1A�hB1uðiÞ; ð20Þ

we reduce the original control delay system Eq. (19) into a delay-free system

zðkþ 1Þ ¼ AzðkÞ þ BuðkÞ þ EfðkÞ; k ¼ 1;2; . . . ;

zð0Þ ¼ j; ð21Þ

where B ¼ A�hB1.
Optimal control regulates the response of structure to internal or external excitation by minimizing a given cost

index. Then we adopt it to depress the vibration of offshore structures. The active control using optimal control law is
prior to passive control. In this work, we will develop an optimal control law to decrease vibration of such offshore
structures below dangerous levels, and guarantee the stability and performance of the system with time-delay in
control action.

Because disturbance fðkÞ exists persistently, state variable zðkÞ and control force uðkÞ will not converge to zero
synchronously. Then we take following quadratic average cost index

J ¼ lim
N-1

1=N
XN

k¼1

½zTðkÞQzðkÞ þ uTðkÞRuðkÞ�; ð22Þ

where Q 2 Rn�n is a positive semi-definite matrix, R 2 Rm�m is a positive definite matrix.

Assumption 2. ðA;B1Þ is completely controllable and ðA;CÞ is completely observable, where C is defined by Q ¼ CTC.

It is shown in [15] that ðA;B1Þ is completely controllable if and only if ðA;BÞ is completely controllable. Then the reduced

system Eq. (21) is completely controllable according to Assumption 2.

The objective of the presented paper is to find the optimal control u* to minimize cost index Eq. (22) subjected to

constraints Eqs. (15) and (21).

4. Design of FFOCLM

In this section, we develop a FFOCLM to decrease the vibration of platforms.

Theorem 1. Consider the optimal control problem described by the system Eqs. (15), (21), and the quadratic cost index Eq. (22).
Under Assumption 2, there exists the following unique stabilizing control law FFOCLM

u�FFOCLMðkÞ ¼ �S�1BTt½PAxðkÞ þ PA�h
Xk�1

i¼k�h

Ak�iB1u�FFOCLMðiÞ þ PEfðkÞ þ PGwðkÞt�; k ¼ 0;1; . . . ð23Þ

where S ¼ R þ BTPB, P is the unique positive definite solution to the following discrete Riccati equation

ATPðI� BS�1BTPÞA� PþQ ¼ 0; ð24Þ

P is the unique solution to the following Sylvester equation

AT
ðI� PBS�1BT

ÞPG� P ¼ �AT
ðI� PBS�1BT

ÞPEF: ð25Þ

Proof. Applying the maximum principle to system Eq. (21) and quadratic cost index Eq. (22), we get optimal control law

uðkÞ ¼ �R�1BTkðkþ 1Þ; k ¼ 0;1;2; . . . ; ð26Þ
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where kðkÞ is the solution to the following two-point boundary value (TPBV) problem

zðkþ 1Þ ¼ AzðkÞ � BR�1BTkðkþ 1Þ þ EfðkÞ;

kðkÞ ¼ QzðkÞ þ ATkðkþ 1Þ; k ¼ 0;1;2; . . . ;

zð0Þ ¼ j;kð1Þ ¼ 0: ð27Þ

To solve the TPBV problem Eq. (27), let

kðkÞ ¼ PzðkÞ þ PwðkÞ; k ¼ 0;1;2; . . . : ð28Þ

From Eqs. (15), (27), and (28), we get

R�1BTkðkþ 1Þ ¼ S�1BT
½PAzðkÞ þ PEfðkÞ þ PGwðkÞ�: ð29Þ

Then the optimal control law Eq. (26) can be rewritten as

u�ðkÞ ¼ �S�1BT
½PAzðkÞ þ PEfðkÞ þ PGwðkÞ�; k ¼ 0;1;2; . . . : ð30Þ

Substituting Eq. (20) into Eq. (30), we get the optimal control law Eq. (23). Noting Eq. (15), and substituting Eqs. (21),

(28), and (30) into the second equation of Eq. (27), we get

kðkÞ ¼ QzðkÞ þ ATkðkþ 1Þ ¼ QzðkÞ þ AT
½Pzðkþ 1Þ þ Pwðkþ 1Þ�

¼ ½Q þ AT
ðI� PBS�1BT

ÞPA�zðkÞ þ AT
ðI� PBS�1BT

ÞðPEFþ PGÞwðkÞ: ð31Þ

Comparing the coefficients of Eqs. (28) and (31), we obtain Eqs. (24) and (25).

In the followings, we will prove that the optimal control law Eq. (23) is existent and unique, and is a stabilizing method.

Obviously, the existence and uniqueness of Eq. (23) is equivalent to that of P and P. Directly following from Assumption 2,

the matrix P is existent and unique. According to optimal regulator theory,

jli½ðI� BS�1BTPÞA�jo1; i ¼ 1;2; . . . ;n: ð32Þ

Noting Eq. (16), we obtain

jli½A
T
ðI� PBS�1BT

Þ�ljðGÞjo1; i ¼ 1;2; . . . ;n; j ¼ 1;2; . . . ;2r: ð33Þ

Then P, the solution to Eq. (25), is existent and unique [3,16]. When P and P are derived, u* can be determined from

Eq. (23). Therefore the optimal control law is existent and unique.

From Eqs. (20) and (30), one gets

JxðkÞJrJzðkÞJþ h max
1rsrh

JAs�1�hJ JB1S�1BTPAJ max
1rsrh

Jzðk� sÞJ

þ h max
1rsrh

JAs�1�hJ JB1S�1BT
ðPDFþPGÞJ max

1rsrh
Jwðk� sÞJ: ð34Þ

Because JzðkÞJ and JwðkÞJ are bounded, JxðkÞJ is bounded. Then FFOCLM Eq. (23) is a stabilizing control law for time-

delay system Eq. (19). This completes the proof. &

5. Simulation result and discussion

In this section, we investigate the feasibility and effectiveness of the presented FFOCLM. The jacket-type offshore
platform we study is located in Bohai Bay. The structural parameters are listed as: the total height of platform L ¼ 41:1 m,
the equivalent characteristic diameter of the platform legs D ¼ 1:7 m, the first modal mass m1 ¼ 2;371;100 kg, the natural
frequency of platform o1 ¼ 2:20 rad=s, the structural damping ratio x1 ¼ 4 percent, and the shape function of first mode
jðsÞ ¼ 1� cosðps=ð2LÞÞ, 0rsrL. As Fig. 1 shown, an AMD device is installed on the deck of the platform. The properties of
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the AMD device are given as: the mass m2 ¼ 11;855 kg, the natural frequency o2 ¼ 2:33 rad=s, and the structural damping
ratio x2 ¼ 9:32 percent.

In present study, the irregular wave is expressed by JONSWAP spectrum

SZðoÞ ¼ ½5H2
s =ð16o0Þ�ðo0=oÞ5 exp½�1:25ðo=o0Þ

�4
�gb; ð35Þ

where Hs is the significant wave height, o0 is the peak frequency, o is the wave frequency, g is the peakedness parameter,
b ¼ exp½�ðo�o0Þ

2=ð2s2o2
0Þ�, in which s is the shape parameter, s ¼ 0:07 ðoro0Þ, s ¼ 0:09 ðo4o0Þ. Here Hs ¼ 4 m,

o0 ¼ 0:87 rad=s, and g=3.3. The power spectrum density (PSD) of wave elevation is shown in Fig. 2. The wave forces f can be
calculated from (15) with the water depth d=13.2 m, the drag coefficient Cd=1.2, and the inertial coefficient Cm=2.0. The
irregular wave force acting on the structure is displayed in Fig. 3.

The sampling period is T=0.01 s, and the time-delay t in control input ranges between 0.01 s and 1 s.
Q ¼ diagð107 0 107 0Þ, R ¼ 10�6.

In the followings, we first compare the FFOCLM with FFOCL, SFOCLM, and predictive optimal control law. After that, we
make a sensitivity study on the damping radio.

FFOCL is a feedforward and feedback optimal control law designed without taking time-delay into account, and it can be
expressed as follows

u�FFOCLðkÞ ¼ �S�1
1 BT

1½P1AxðkÞ þ P1EfðkÞ þ P1GwðkÞ�; k ¼ 0;1;2; . . . ; ð36Þ

where S1 ¼ R þ BT
1P1B1, P1 is the unique positive definite solution to the following discrete Riccati equation

ATP1ðI� B1S�1
1 BT

1P1ÞA� P1 þ Q ¼ 0; ð37Þ

P1 is the unique solution to the following Sylvester equation

AT
ðI� P1B1S�1

1 BT
1ÞP1G� P1 ¼ �AT

ðI� P1B1S�1
1 BT

1ÞP1EF; ð38Þ
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SFOCLM is the state feedback optimal control law with memory, based on reduced system Eq. (21)

u�SFOCLMðkÞ ¼ �S�1BT
½PAxðkÞ þ PA�h

Xk�1

i¼k�h

Ak�iB1u�SFOCLMðiÞ�; k ¼ 0;1;2; . . . : ð39Þ

The displacement and velocity feedback terms are the common terms of FFOCL, SFOCLM, and FFOCLM. FFOCL and
FFOCLM contain same feedforward terms that do not appear in SFOCLM. Compared with FFOCL, we can see that SFOCLM
and FFOCLM add finite number of past control actions to the current control input as memory.

When the control law is FFOCL, the maximum displacement and acceleration of the offshore structure with different
time-delays are presented in Figs. 4 and 5, respectively. Figs. 6 and 7 show the corresponding maximum control force and
the cost index value of the system.
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Fig. 8. Maximum displacement of offshore structure with various time-delays.
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Fig. 9. Maximum acceleration of offshore structure with various time-delays.
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When the time-delay is small, the difference of structure response and control force among FFOCL, SFOCLM and FFOCLM
is not much. But FFOCL does not consider the effect of time-delay, and then it cannot always guarantee the stability of the
system. When t ¼ 0:4 s, the original time-delay system with FFOCL becomes unstable while maintains stable with SFOCLM
and FFOCLM.

Next we compare the control laws with memory: SFOCLM and FFOCLM. First, we give the maximum displacement and
acceleration of the offshore platform with various time-delays in Figs. 8 and 9. The maximum control forces of different
control laws and corresponding cost index values vs. time-delay are shown in Figs. 10 and 11. The system performance with
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Fig. 10. Maximum control force of offshore structure with various time-delays.
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Fig. 11. Cost index value of system with various time-delays.
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Fig. 12. Displacement of offshore structure with time-delay t=1 s.
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SFOCLM and FFOCLM is much better than the case without control. Compared with SFOCLM, FFOCLM can reduce the
vibration more significantly with smaller control force and cost index value. From the simulation results, we can see that
FFOCLM can guarantee the performance and the stability of the system with large time-delay. In this study, the time-delay
in control is up to 1 s that is long enough in the civil engineering.

For a long time-delay t ¼ 1 s, we give the displacement and acceleration curves of the offshore system without control,
with SFOCLM, and with FFOCLM in Figs. 12 and 13, respectively. The corresponding control curves are presented in Fig. 14.
Let J1 denote the system cost index value with SFOCLM, and J2 denote that with FFOCLM. We obtain J1=2228.3, J2=400.9.
FFOCLM can decrease the cost index 82 percent compared with SFOCLM. The displacement, velocity, and acceleration
curves show that FFOCLM can reduce the vibration of the offshore structure efficiently. At the same time, the control force
of the FFOCLM is smaller than that of SFOCLM as shown in Fig. 14. FFOCLM can reduce the vibration induced by wave force
and decrease the effect on the stability of the time-delay in control input.
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Fig. 13. Acceleration of offshore structure with time-delay t=1 s.
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Fig. 14. Control force of offshore structure with time-delay t=1 s.

Table 1
Maximum displacement of the offshore structure (m).

x2 0.02 0.04 0.05 0.06 0.08 0.09

No contr. 0.0199 0.0203 0.0204 0.0204 0.0204 0.0204

SFOCLM 0.0152 0.0153 0.0153 0.0153 0.0153 0.0154

FFOCLM 0.0115 0.0116 0.0116 0.0117 0.0118 0.0118

Table 2
Maximum acceleration of the offshore structure (m2/s).

x2 0.02 0.04 0.05 0.06 0.08 0.09

No contr. 0.0772 0.0779 0.0780 0.0780 0.0781 0.0782

SFOCLM 0.0464 0.0466 0.0466 0.0467 0.0468 0.0469

FFOCLM 0.0296 0.0295 0.0294 0.0294 0.0293 0.0293

Table 3
Maximum control of the control law (104 N).

x2 0.02 0.04 0.05 0.06 0.08 0.09

SFOCLM 3.4951 3.5213 3.5398 3.5619 3.6167 3.6490

FFOCLM 2.9830 2.9658 2.9596 2.9552 2.9510 2.9511
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Table 4
Cost index value of the system.

x2 0.02 0.04 0.05 0.06 0.08 0.09

No contr. 2283.2 2262.1 2255.4 2251.2 2249.0 2250.1

SFOCLM 1719.9 1723.6 1725.0 1726.0 1727.1 1727.0

FFOCLM 467.7 471.0 473.0 475.4 480.9 484.0
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For the same offshore structure model, predictive time-delay compensation method is studied in [10], with the sea state
Hs ¼ 2:5 m, o0 ¼ 1:4 rad=s. Based on prediction of wave force and structural response, the optimal prediction of active
control force is used to perform time-delay compensation. The simulation results indicate that the optimal prediction time-
delay compensation method is effective for the definite interval of time-delay, that is tr0:2 s. With the increase of time-
delay, the prediction cannot keep high precision, and then effect of time-delay compensation control in [10] becomes
worth. When time-delay is 0.3 s, compared with the case without control, the standard variation of displacement of
structure can be reduced 45.82 percent, velocity 46.91 percent, and acceleration 44.14 percent. The standard variation of
the control force is 61.13 kN. With same seastate and structure parameters as above mentioned, the FFOCLM presented in
this paper can guarantee the performance and stability and reduce the vibration with the time-delay up to 1 s. When time-
delay is 0.3 s and the system is controlled by FFOCLM, the standard variation of platform displacement can be reduced
60.65 percent, velocity 70.29 percent, and acceleration 78.08 percent. The standard variation of control force is 13.54 kN.

In the followings, we make a sensitivity study on the damping ratio. Set the time-delay 0.8 s. When damping ratio of the
AMD x2 ranges from 0.02 to 0.09, and the damping ratio of the offshore structure x1 remains 0.04, we get the following
results in Tables 1–4.

When there is no control, and controlled by SFOCLM and FFOCLM, with the increase of the damping ratio of AMD device
x2, there are changes in the maximum displacement and acceleration of offshore structure, the control force and the cost
index value of the system. We can see that damping ratio of the AMD device x2 can affect system performance, but the
effect is not very obvious.

The simulation results show that FFOCLM can reduce the wave-induced vibration and compensate the time-delay. From
the application’s point of view, FFOCLM can ensure the safety and the production efficiency.
6. Conclusions

In this paper, we develop an optimal vibration control law for the jacket-type offshore platforms under irregular wave
forces. Time-delay exists in control and affects the stability and performance of system. To simulate the random wave loads,
we design an exosystem based on wave theory and the Morison equation, which is easy to complete. The design of FFOCLM
considers effect of time-delay and wave force acting on the structure. The memory of the finite past control actions in the
FFOCLM compensates the time-delay and the feedforward terms reduce the vibration induced by wave forces. The feedback
loop of FFOCLM consists of displacement and velocity. The FFOCLM is proved to be existent and unique, and can guarantee
the stability of the time-delay systems.

To demonstrate the effectiveness of the presented control law, a numerical example of a steel jacket-type offshore
platform located in Bohai Sea is studied. Simulation results show that the FFOCLM is more efficient and robust than FFOCL,
SFOCLM, and optimal predictive algorithm. For the control system with FFOCLM, damping ratio of the AMD device can
affect system performance, but the effect is not very obvious. FFOCLM can compensate the time-delay in control input and
depress wave-induced vibration efficiently, so the performance and stability of the system can be guaranteed.
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